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Virtual mass and drag in two-phase flow 
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We study virtual mass and drag effects in a fluid suspension consisting of spherical 
particles immersed in an incompressible, nearly inviscid fluid. We derive average 
equations of motion for the fluid phase and the particle phase by the method of 
ensemble averaging. We show that the virtual mass and drag coefficients may be 
expressed exactly in terms of the dielectric constant of a corresponding dielectric 
suspension with the same distribution of particles. We make numerical predictions 
for the case of an equilibrium distribution of hard spheres. 

1. Introduction 

It is well known that a single body suspended in an incompressible, inviscid fluid 
experiences a reaction force when accelerated, due to the inertia of the surrounding 
fluid (Landau & Lifshitz 1961 ; Batchelor 1967; Milne-Thomson 1968; Lighthill 
1986). For a spherical particle the corresponding virtual mass is just one half of the 
mass of the fluid displaced by the particle (Kelvin, see Lamb 1932, chap. 6). In the 
case of many particles the virtual mass is modified owing to hydrodynamic 
interactions. For a suspension of particles one may define a transport coefficient 
which plays the role of virtual mass in the average equation of motion. One wishes 
to find this coefficient as a function of the volume fraction occupied by particles. 
Similarly, for a slightly viscous fluid the drag coefficient is modified from its single- 
particle value owing to hydrodynamic interactions. One wishes t o  find the drag 
coefficient appearing in the average equation of motion as a function of volume 
fraction. 

The concentration dependence of the virtual mass has been studied by many 
authors (Zuber 1964; Buyevich 1971; van Wijngaarden 1976; Cook & Harlow 1984; 
Geurst 1985; Kok 1988; Biesheuvel & Spoelstra 1989). At low concentration one may 
consider the series expansion of the virtual mass in powers of the volume fraction. 
For the case of massless particles, or bubbles, van Wijngaarden (1976) has calculated 
the coefficient of the linear term in the expansion. For higher concentrations only 
approximate results have been obtained. In an early article Zuber (1964) derived an 
approximate expression for the virtual mass on the basis of a cell model. Van 
Wijngaarden’s coefficient does not differ much from the value obtained by expansion 
of Zuber’s expression in powers of the volume fraction. 

In the following we show that the virtual mass and the drag coefficient may be 
expressed exactly in terms of the effective dielectric constant of a related dielectric 
suspension of spherical particles with the same geometric distribution. This mapping 
allows one to derive results for virtual mass and drag from results obtained for the 
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dielectric problem. We find a different value for the coefficient calculated by van 
Wijngaarden. Zuber’s expression for the virtual mass follows by approximating the 
dielectric constant of the related problem by its Clausius-Mossotti value. On the 
basis of the theory of dielectrics we propose an approximation scheme which allows 
accurate evaluation of the virtual mass and drag coefficient even a t  high volume 
fractions. 

Our analysis is based on the linearized Navier-Stokes equations for an 
incompressible fluid. Thus we study only the limit of low Reynolds number. In the 
microscopic picture we consider a disordered configuration of iden tical spheres which 
are subject to small applied forces oscillating a t  a given frequency. As a consequence 
the spheres perform small oscillations about their rest positions. We study the limit 
of small viscosity, or equivalently the limit of high frequency. In this limit the fluid 
flow may be derived from a potential, except in a thin boundary layer surrounding 
each sphere. For the linear flow situation under consideration we obtain macroscopic 
equations of motion for the two-phase system by averaging over an ensemble of 
configurations. The virtual mass is found as an inertial coefficient in the linear 
macroscopic equations. The drag coefficient is found as a transport coefficient 
describing the friction between the two phases. Owing to hydrodynamic interactions 
both coefficients depend on the concentration of spheres. 

In the following two sections we consider first the solution of the flow equations for 
a single sphere. Subsequently we study the hydrodynamic interactions between 
many spheres and perform the ensemble average. We show that the virtual mass and 
drag coefficient may be obtained from a related dielectric problem. The macroscopic 
equations may be written in a variety of different forms which lead to various 
possible definitions of the virtual mass. We indicate the relation between different 
definitions which have appeared in the literature. 

2. Single-particle equation of motion 
We consider a spherical particle of radius a and mass mp immersed in an 

incompressible fluid of mass density p. We study first the case of an ideal fluid and 
neglect viscosity. We denote the local fluid flow velocity by u(r) and the fluid pressure 
by p ( r ) .  The instantaneous position of the centre of the sphere is denoted by R and 
its translational velocity by U. The sphere is assumed to be impermeable to the flow. 
Hence the velocity components normal to the surface must satisfy the kinematic 
boundary condition 

If the flow is irrotational the flow velocity can be derived from a scalar potential q5 
according to 

Incompressibility of the fluid is expressed by V * v = 0. As a consequence the 
potential q5 satisfies the Laplace equation V2# = 0. If the flow a t  infinity is uniform 
the instantaneous flow pattern is 

v, = U, a t  Ir- RI = a. (2.1) 

v = -V#. (2.2) 

where ro = r - R. The force exerted on the sphere by the fluid is given by 

K = -  P ? ~ ~ S ,  (2.4) s 
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where the integral is over a spherical surface just enclosing the particle. The force is 
found to be (Landau & Lifshitz 1961 ; Batchelor 1967) 

K = - h  -+% d U  - duo 
"dt ' d t '  

where m, = (in) pa3 is the mass of the displaced fluid. If an external force E is applied 
to the particle, then the acceleration of the particle is given by 

d U  dv 
dt "dt 

( m P + ~ ' ) -  = E+% 2. 

This shows that the effective mass of the particle is the sum of its own mass mp and 
the added mass &nf. In the following we wish to investigate how the added mass is 
modified by hydrodynamic interactions in a system of many spheres. We wish to 
include the frictional force and consider a slightly viscous fluid described by the 
linearized equations of motion 

av 
p- = r/v2v-vp, v - v = 0, (2.7) at 

where 7 is the shear viscosity. The kinematic boundary condition (2.1) must then be 
supplemented with an equation relating the velocity components of fluid and particle 
tangential to the surface of the sphere. We use the mixed slipno-slip boundary 
condition (Felderhof 1976) 

ca 

7 

where a is the rotational velocity of the sphere. The proportionality constant c plays 
the role of slip parameter and (a - n)t is the normal-tangential component of the fluid 
stress tensor a, defined by 

We consider small translational motions of the sphere about its rest position R due 
to an applied force E(t) and a uniform incident flow v,(t). Because of linearity it is 
convenient to do a Fourier decomposition in time and to consider harmonic time 
variation of the force E(t) = E, exp ( - iwt) and incident flow vo(t) = u,, exp ( - iwt). In 
the limit of small viscosity the solution of the flow equations (2.7) reads (Felderhof 
& Jones 1986) 

u , - ( U + a ~ r ~ ) ~ = - ( a ~ n ) ,  at r O = a ,  (2.8) 

gap  = r/(aaup+'pua)-P'ap. (2.9) 

1 exp [ - a(r, -a)] ( l - t o t o ) ~ ( U ~ - ~ o w ) ,  r, > a, (2.10) 
+'(I+%) olr, 

where a = (-iwp/r/)i, Re (a) > 0. The slip parameter c takes the value c = 0 for no- 
slip and the value c = 00 for perfect-slip boundary conditions. Clearly the first two 
terms on the right in (2.10) correspond to the solution (2.3). The last term describes 
a thin boundary layer near the surface. The force exerted by the fluid on the sphere 
now follows from 

(2.11) 
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As a result one finds, for small viscosity, 

K, = (t iwm, - 5) ( U, - uo,J - iwm, U,, 

with the friction coefficient (Felderhof 1976) 

(2.12) 

(2.13) 

The linearized equation of motion for the particle may be written 

[ - iw(m, + $nf) + yl U, = E,- ($ iwm,- 5) vow. (2.14) 

This corresponds precisely to  (2.6) with the additional effect of friction included. 
We note that for perfect slip (c  = 00)  the friction coefficient takes the value 5 = 

12nqa. This is precisely the value calculated by Levich (1962) from the energy 
dissipation in the irrotational flow pattern (2.3). The expression for the energy 
dissipation is quadratic in the flow velocity, but may be derived from the linear 
equation (2.7), so that our calculation is consistent with that given by Levich. As 
shown by Levich, in the case of irrotational flow the energy dissipation may be 
expressed in terms of a surface integral. The additional friction for finite values of the 
slip parameter is due to additional dissipation in the boundary layer described by the 
last term in (2.10), where the flow has non-zero vorticity. 

The dimensionless parameter characterizing the importance of nonlinearity is 
given by the Reynolds number paU/T. The dimensionless parameter characterizing 
the importance of the viscous stress for the rate of change of momentum is given by 
(la1 a)-z = q/wpa2. The above equations are valid in the limit where both parameters 
are small. In  the following we shall consider small motions of a many-sphere system 
under the same conditions. We shall derive a generalization of the equation of motion 
(2.14) with an added-mass term and a generalized friction coefficient dependent on 
the local density of spheres. 

3. Potential flow about a sphere 
For the study of hydrodynamic interactions it turns out to be convenient to 

reformulate the boundary-value problem. In this section we consider flow about a 
single sphere on the basis of the linear equations (2.7). The thin-boundary-layer effect 
is not treated explicitly, except in the calculation of the force exerted by the fluid on 
the sphere, where we shall use a slight generalization of (2.12). I n  this manner friction 
is included in the calculation. 

For simplicity of notation we shall often omit the subscript w ,  i t  being understood 
that we are dealing with a single Fourier component a t  frequency w .  We consider the 
potential flow problem for a single sphere centred a t  the origin. It follows from (2.3) 
that the potential due to its velocity U is given by 

q5Jr) = 9 1 3 ;  -- U, r > a. 
r2 (3.1) 

I n  the statistical averaging procedure to be applied in the many-sphere problem it 
is convenient to deal with equations valid everywhere in space. We specify the 
potential inside the sphere as 

#(r) = &(r) = - r .  U, r < a. (3.2) 
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Hence Laplace's equation is satisfied everywhere, except on the surface of the sphere. 
It is easily seen that the normal derivative of $ is continuous across the surface, but 
that $ itself is discontinuous. Hence we can write 

Vz$ = 4xa&(r-a), (3.3) 

$lu+ - $ I u -  = 4lta. (3.4) 

where a must be chosen such that 

In electrical language a may be identified with the radial component of a surface 
polarization Ps (Jackson 1962). Explicitly 

pp=o,  p;=u .  (3.5) 
For the potential $ J r )  given by (3.1) and (3.2) we find 

3a P:  = -rr - U. 
8lt 

The dipole moment of the sphere is given by 

in agreement with (3.1). 
p u  = +3u (3.7) 

In the presence of an incident flow u, = -V$, we obtain the total potential 

$(r)  = $ U P )  + $ O W  +$in&)* (3.8) 
The potential $,(r) satisfies Laplace's equation and may be expanded in spherical 
harmonics, 

$o(r) = Z ~ ~ r n r l K m ( 8 , ~ ) .  (3.9) 
lm 

The induced potential @ind(r) precisely cancels $, for r < a, and for r > a has the 
harmonic expansion 

= Z B l m r - l - l ~ m ( e > v ) ?  > a. (3.10) 
lm 

By use of the kinematic boundary condition (2.1) we find 

= o  r < a. (3.11) 

Hence the induced surface polarization is given by 

(3.12) 

In particular, if the sphere is placed at rest in a uniform flow u,, then a surface 
polarization 

(3.13) 

is induced. The corresponding dipole moment is 

pind = - &Z3U0. (3.14) 

The total dipole moment for a moving sphere in an incident flow vo(r) is given by 

p = & ~ 3 (  u- ~ ~ ( 0 ) ) .  (3.15) 
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The higher-order multipole moments may be expressed in terms of the derivatives of 
the incident flow velocity uo(r) a t  the origin. 

If an external force E is applied to the particle, then in the absence of an incident 
flow it acquires a velocity U,, which may be calculated from (2.14). The 
corresponding dipole moment is 

P E  = aEE (3.16) 
with polarizability 

- 1  
iw(m, + 2mp) - 2c 

a, = a3. (3.17) 

In an incident flow uo = -Vq50 the linearized equation of motion for the particle 
becomes (Felderhof 1976) 

[ - io(mp +$,) + 5] U = E- ($iwm,- g) uo(0), (3.18) 

a slight generalization of (2.14). Hence the total dipole moment may be written as 

with # given by 

with polarizability 
iw(m, - mp) 

a =  iw(m, + 2m,) - 2g a3, 

(3.19) 

(3.20) 

(3.21) 

as follows from (3.15) and (3.18). The surface polarization may be decomposed in 
similar manner, 

PS = Pi+ P s ,  (3.22) 
where Pg is given by 

301, " A  Pi = -rr - E 
4na2 

(3.23) 

and Ps  = Pt + Pfnd - Pi is linear in uo(r). In  our theory the effect of friction appears 
only in the polarizabilities a, and Oi. 

Finally we note that with the polarization 

P(r) = P ( P ) & ( r - a )  (3.24) 

and the velocity field u = -Vq5 we may define the vector field 

u = u+4nP: (3.25) 

In the electrical analogy u is the dielectric displacement. Hence the fields u and u 
satisfy the equations 

v . u = o ,  v x u = o .  (3.26) 

These equations remain valid in the case of many spheres. The above concepts are 
useful in the study of hydrodynamic interactions between spheres. 

4. Hydrodynamic interactions 
We consider N identical spheres immersed in an incompressible fluid of infinite 

extent. The spheres make small movements about positions R,, . . . , RN caused by 
applied forces E,(t), . . . , EN(t) and by an irrotational flow uo(r, t) incident from 
infinity. The fluid velocity u(r, t )  and the pressure p ( r ,  t )  are assumed to satisfy the 
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linear equations (2.7). We do a Fourier analysis in time and consider the limit of high 
frequency at  fixed viscosity so that g/wpa2 is a small parameter. We neglect the thin 
boundary layer surrounding each sphere, except in its effect on the force exerted on 
the sphere by the fluid. Thus the whole flow is irrotational and we may put 

vow = - Q#ot,,lr, 0, = - Q#w. (4.1) 

This reduces the problem of hydrodynamic interactions to a problem in potential 
theory. 

We employ the device introduced in the preceding section and describe the effect 
of each sphere on the flow in terms of a surface polarization. The potential q5 and the 
flow velocity u inside each sphere follow from its translational velocity. The total 
polarization is given by 

The corresponding potential is 

#(r )  = # o ( r ) + [ r -  r - r f  P(rf)dr’. 
r-rf13 (4.3) 

Each surface polarization P; is decomposed as in (3.22) with P:E given by 

(3aE/4~a2)  jV E,, 

and p: linear in the flow pattern incident on sphere j. 
The flow velocity may be expressed as 

u(r) = uo(r) + Go(r-r’)  - P(r’) dr’, (4.4) I 
with a Green’s function which follows by differentiation of (4.3). The integral in (4.4) 
must be interpreted as 

47c 
3 

Go(r-r’) - P(r‘)dr’ = - -P(r )+  Go(r-r‘)  - P(rf)dr‘, (4.5) 

where the symbol 6 on the second integral indicates that an infinitesimal sphere of 
radius 6 centred at r must be excluded from the integration. The flow pattern acting 
on sphere j may be expressed as 

q(r) = uo(r) + Go(r-r’) * Pk(r’) dr’. (4.6) 
k + l  I 
I 

The polarization on sphere j is given by 

P,(r) = q E ( r )  + M(j; r ,  r’) * $(r’) dr’ (4.7) 

with a linear operator M(j) which may be found from (3.22). Substituting (4.6) we 
find that the polarization P(r)  may be expressed in terms of a multiple scattering 
expansion with propagation between successive particles described by the Green’s 
function Go. 

For mathematical convenience we assume that the applied forces {E,} may be 
derived from a vector field E(r) ,  independent of the configuration R,, . . . , R,, 
according to the rule 

E, = E(R,) = k ( r )  6(r -  R,) dr. (4.8) 
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It is clear that the total polarization P(r)  is linear in the field E(r) as well as in the 
incident flow vo(r), and may therefore be written 

P(r)  = T,,(r,r‘;R1 ,..., RN).E(r’ )dr’+  TMM(r ,r ‘ ;R1 ,..., R N ) .  vo(r’)dt’  (4.9) 

with linear operators T,, and T,, dependent on the configuration. In shorthand 
notation 

P = T,, * E+T,, * v0. (4.10) 

The operators T,, and T,, may each be expressed in terms of a multiple scattering 
expansion. 

We have arrived a t  a description which is formally analogous to that encountered 
in creeping-flow hydrodynamics (Felderhof 1988). We proceed in the same way and 
arrive at a macroscopic description by averaging the equations over a probability 
distribution P(Rl ,  . . . , R N )  which is assumed known. We assume that the spheres are 
distributed approximately uniformly in a volume Q. Thus we find, by averaging 

s s 

(4.10) 

From (4.4) we find for the average flow velocity 

( v )  = vo+G0 (P). 

(4.11) 

(4.12) 

Hence it follows that the average flow velocity satisfies 

v * ( v )  = -447CV. (P), v x ( v )  = 0. (4.13) 

By use of the definition u = 0+47cP, as in (3.25), we may rewrite these equations as 

(4.14) w * ( u )  = 0, v x ( v )  = 0. 

Substituting (4.12) in (4.11) and eliminating uo we find 

(p> = x M E  ’ E + X M M ’ ( u ) ,  

with the linear operators 
(4.15) 

x M E  = (/+(TMM) G O ) - 1  (TkfE>, x M M  = (TMM) (/+GO(TMM))-l* (4.16) 
The corresponding kernels are short range in the difference r - r’, in contrast to the 
kernels TME and T,,. Thus the relation (4.15) is local in nature, in contrast to (4.11). 

We are also interested in the motion of the particles and therefore consider the 
particle current density, defined by 

N 

J ( r ; R l ,  ..., R N )  = C Uj6(r-R1).  (4.17) 

The current density is also linear in E ( t )  and vo(r),  and therefore we have, in analogy 
1-1 

to (4.10), 
J = TJE - E+TJ, - v0.  

Averaging this equation we obtain 

(a = (TJE) * E+ (TJM) - 00. 

Substituting (4.12) and eliminating vo we find 

(4.18) 

(4.19) 



Virtual mass and drag in two-phase flow 185 

Again the corresponding kernels are short range in the difference r-r'. We have 
shown in earlier work (Cichocki & Felderhof 1988a) that the kernels may be 
evaluated from a renormalized cluster expansion. 

5. Transport coefficients 
In this section we consider a situation where the macroscopic fields show a slow 

spatial variation. Correspondingly the short-range transport kernels X,,, . . . , X,, 
given by (4.16) and (4.21) may be replaced by delta-functions with prefactors which 
may be identified as transport coefficients. One may derive exact expressions for the 
transport coefficients by taking the thermodynamic limit N-+ m7 sZ+ m at constant 
density n = N / Q .  In this limit the transport kernels become translationally invariant. 
We shall not carry out the procedure in full detail, because the present problem can 
be related to a corresponding dielectric problem. The theory of the dielectric constant 
of a polarizable suspension within the framework of the renormalized cluster 
expansion has been worked out in detail in Cichocki & Felderhof (1988b). 

The relation to the dielectric problem becomes evident if we note that all 
intermediate scattering processes involve the single-body polarization operator M 
defined in (4.7). In electrical language this operator describes how a sphere is 
polarized by an incident electric field, which may be identified with the acting field 
va(r).  The response is characterized by a set of multipole polarizabilities {a,} for 1 = 
1,2, . . . . From (3.11) and (3.20) we find that these polarizabilities are given by 

for 1 = 2 , 3 ,  .... (5.1) --I a21+1 a1 = il, a, =- 
1+1 

The multipole polarizabilities a, for 12 2 are identical with those for a sphere of 
vanishing dielectric constant in vacuum. The dipole polarizability differs because i t  
contains a contribution due to the velocity of the freely moving sphere caused by the 
incident flow. A collection of spheres with the given probability distribution and with 
given single particle polarizabilities has a perfectly well-defined dielectric constant e. 
In our case the polarizabilities are specified by (5.1). The transport coefficients of 
interest in the present problem may be expressed in terms of the dielectric constant. 
These relations are exact and therefore a calculation of the transport coefficients is 
reduced to a calculation of the dielectric constant of the corresponding dielectric 
system. 

It is well known that the dielectric constant of an isotropic system of polarizable 
spheres is well approximated by the Clausius-Mossotti (CM) formula 

'CM - ' -- eCM + - $mil. 

It therefore makes sense to use this as a first approximation and to express the results 
in terms of the deviation from the Clausius-Mossotti value. The CM-formula (5.2) is 
based on Lorentz' approximation to the average local field acting on a selected 
particle. According to Lorentz this field is approximated by 

V L  = ( v ) + $ n ( P ) ,  (5.3) 
where ( v )  is the average Maxwell field in electrical language. The exact expression 
for the average local field may be written 

F =  ( v ) + $ n y ( P ) ,  (5.4) 
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where the coefficient y expresses the correction to the Lorentz value. The 
corresponding exact expression for the dielectric constant is 

4nnoi 
1 - (2n) noiy' 

€ =  1 +  

or equivalently 

(5.5) 

In  earlier work on the dielectric constant (Cichocki & Felderhof 19883) we have 
expressed y as 

and have derived exact statistical mechanical expressions for the coefficients A and 
P* 

We now express the transport coefficients of the hydrodynamic problem in terms 
of the coefficient y.  We begin by noting that in the long-wavelength limit the average 
polarization may be identified with the average dipole density, 

y =  l+A+p,  (5.7) 

( P ( r ) )  = ( C P j w - R , ) ) .  (5.8) 

p j  = ~3[v,-tg~,)l. (5.9) 

f 

In  a generalization of (3.15) the dipole moment of sphere j is given by 

Hence we obtain in the long-wavelength limit 

( P )  = $x3[(J>-n4. (5.10) 

Substituting the average local field from (5.4) we therefore find 

(5.1 1 )  

where cp = (6.) nu3 is the volume fraction occupied by spheres. The relation (5.11) is 
exact in the long-wavelength limit. 

A second expression for the average polarization may be derived from the relation 

p ,  = aE Ei +&$(I?,). 
Hence we obtain in the long-wavelength limit 

(5.12) 

(P) = naE E + n&F. (5.13) 

Substituting from (5.4) we find 

with coefficients 
( P >  = XE+K(V), (5.14) 

x = na,[l -$nnoiy]-', K = n&[l -!jnnoiy]-l. (5.15) 

Equating (5.11) and (5.14) and making use of (3.17) and (3.21) we find the relation 

(5.16) 

Again the relation (5.14) is exact in the long-wavelength limit. 

[-iw(mp +ma) + 61 (4) = nEw+ [ -iw(mt +ma) + Ca] n (u,),  

where the added mass ma is given by 

nta = - -m m,, 
2 + y p ,  

(5.17) 
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and the effective friction coefficient [a by 

(5.18) 

The relation (5.16) may be regarded as a generalization of the single-particle 
equation of motion (2.14) to a macroscopic equation of motion for the many-particle 
system. 

To conclude this section we note that substitution of (5.14) into (4.14) yields 

v [s(u,J] = -4nv - (XE,,,), (5.19) 

where we have used the relation 
e = 1 + 4 7 ~ ~ ,  (5.20) 

which follows from (5.5) and (5.15). It is evident from (5.19) that  in general the 
relation between ( u ( r ) )  and E(r) is highly non-local. The determination of ( u )  for 
given E in finite geometry is equivalent to the solution of a problem in electrostatics. 

6. Average equations of motion 
In this section we study the average equation of motion (5.16) in more detail. The 

equation is exact in the long-wavelength limit, with transport coefficients m, and 
given by (5.17) and (5.18), where the coefficient y must be found from the equivalent 
dielectric constant by use of (5.5). 

We define the average particle velocity U,,, and the mass-averaged fluid velocity V ,  
with the equations 

(4) = nu,,,, (u,) = vU,,,+(1-v) v,. (6.1) 

Both U,,,(r) and V,,,(r) are velocity fields with slow spatial variation. The field (u,,,) 
may be identified with the average volume velocity field of the mixture. 

By use of (3.25) and (5.11) we find 

Using also (6.1) we may cast (5.16) in the form 

-iwm, U,,,+[-iwmv+[v](U,,,- V,)  = E,,,-iwm, V,, (6.3) 

with the virtual mass 

and the corresponding friction coefficient 

The equation of motion (6.3) may be cast in several different forms. First we note 
that i t  follows from (3.25), (6.1) and (6.2) that 

7 
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We recall that we have continued the field t),(r) inside the particles where it is 
identical with the translational velocity. Correspondingly we may also continue the 
pressure inside the particles and define it from the equation 

iopv, = Vp,. (6.7 1 
This equation now holds everywhere in space. Averaging (6.7) and substituting in 
(6.6) we obtain 

Using this on the right-hand side of (6.3) we may rewrite that  equation as 

- iwpV,  = -V(p,)-iwnm,(U,- V,). (6.8) 

(6.9) - iwm, V, + [ -iw( 1 -cp) m, + I;,] (U, - V,) = E,-#na3V(p,). 

This equation is similar to equations of motion derived by Drew (1983) and by Geurst 
(1985, 1986). We note that (6.8) may be regarded as the average equation of motion 
for the fluid. By linear combination of (6.8) and (6.9) we find 

-iw[( 1 +cpC,) mp + (1 -cp)  m,] (U,- V,) + I;,( U,- V,) = E,-$nu3 me-mpv(P,), 
m, 

(6.10) 

where the virtual-mass coefficient C, is defined as C, = mv/me. The last term on the 
right may be regarded as a buoyancy force. We emphasize that the above equations 
must be used in combination with (4.14) and (5.19). 

A slightly different form of (6.3) may be derived in terms of the velocity difference 

u - ( u )  = (l-Ip)(U-- v). (6.11) 

(6.12) 
This leads to 

-iwm, U,+[-iwm;+5;] (U,-(u,)) = E,-iwm, V,, 

with transport coefficients 

m,=- mv 9 r v = = .  I;, I 

1-cp 
(6.13) 

The form (6.12) may be compared with equation (7.4) of Biesheuvel & van 
Wijngaarden (1984). We recall that the Levich value 12nya for the friction coefficient 
I; follows by use of the perfect-slip parameter c = 00 in (2.13). 

Yet another form of the equation of motion is 

- iwm, U, + [ - iwm, + SL] ( V,- (u,)) = E, - iWme(U,), (6.14) 

with the virtual mass 

mL = 1+W-wme, 
2 - % + w  

and the corresponding friction coefficient 

(6.15) 

(6.16) 

One may derive (6.14) from (6.12) by use of (6.11). We use the subscript L, because 
the same transport coeBcients appear in the longitudinal equation of motion to be 
derived shortly. The equation of motion (6.14) is closely related to equation (4.12) of 
van Wijngaarden (1976), who considered in particular mp = 0. 
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The relations (6.13) and (6.15) imply that one must be careful in comparing values 
for the virtual mass appearing in the literature. From (6.4) we find that the virtual- 
mass coefficient C, = mv/mf has the exact expression 

c -  1-YP, 
v -  2-3ql+yp,' 

(6.17) 

We note that if y is approximated by the Clausius-Mossotti value y = 1 ,  then the 
virtual-mass coefficient C, takes the value t ,  independent of the volume fraction. 
Similarly we define the virtual-mass coefficient C, by means of the relation mL = 
C,m,. From (6.15) and (6.17) we find the relation 

c, = (l-p,)C,-p,. (6.18) 

The friction coefficient 6, may be written 

5- 
2 1 + c ,  CL = $(l +C,) 6 = -- 
3 1-p, 

(6.19) 

We compare with an expression for the virtual mass derived by Zuber (1964) from 
a cell model. It is instructive to  repeat his calculation within our present framework 
and t o  include friction. Consider a spherical particle at the centre of a sphere of radius 
b and under the influence of a small force E. The resulting flow has the potential 

(6.20) 

From the boundary condition v,. = 0 at r = b it follows that A = -2p/b3. We 
substitute this in the two equations 

p = a,E+&A = h 3 ( U - A ) .  
Eliminating p we obtain 

(6.21) 

Choosing the radius b such that a3/b3 = p, we find Zuber's induced mass 

and the corresponding friction coefficient 

6 
sz  = G. 

(6.22) 

(6.23) 

(6.24) 

It is clear from the above derivation that Zuber's induced mass cannot be identified 
with the virtual mass m,, since in the defining equation (6.22) the fluid velocity does 
not occur. 

We can define an induced mass without the limitations of the cell model by use of 
(5.19). We consider a suspension of infinite extent which on average is uniform and 
impose a plane-wave force field 

E(r,  t )  = E,,exp (iq - r-iiwt). (6.25) 
7-2 
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It follows from (5.19) that in the long-wavelength limit the corresponding velocity 
field has amplitude 

(6.26) 

More explicitly we find from (3.21) and (5.5) that  

[ - iomf(l+3q,-yp)- iwmp(2-~+yrp)+25]  (v,,) = -*qq - Eq,. (6.27) 

Substituting this in (5.16) we obtain for the longitudinal component of the particle 
current density 

[ - i 4 m p  + mL) + C L l 8 8  - (4,) = .BB - Eq,’ (6.28) 

with mL given by (6.15) and CL by (6.16). The corresponding transverse relation reads 

[ - i4mp + ma) + CaIV - 88) * (4,) = 41 - 44) * 4 p V  (6.29) 

If y is approximated by the Clausius-Mossotti value y = 1,  then mL becomes 
identical with Zuber’s expression (6.23) and C, becomes identical with (6.24). As one 
would expect the cell model yields a mean field result. 

We note that (6.27) may be written alternatively as 

(6.30) 

By means of (3.25), (6.1), (6.2) and (6.28) this may be seen to be consistent with 
(4.14). The latter equation implies that the longitudinal component of the mean 
volume flux 4 * (u,) vanishes. 

One-dimensional motions in the direction of the wavevector are purely longi- 
tudinal. For such motions we may cast (6.28) in the alternative form 

(6.31) 

where we have used the notation Ut, = q - Uq,. Comparing this with Batchelor’s 
equation of motion (2.15) for a fluidized bed (Batchelor 1988) we see that his virtual- 
mass coefficient C(p) must be identified with C, = mL/mf. 

Finally we note that for longitudinal motions we may use the equation (u“ )  = 0 
to cast the particle equation of motion (6.31) in the form 

- iwm, Utu + [ - iwm, + 5J (1 -p) ( Ut,- V&) = A!;,,. (6.32) 

The above analysis shows that the equations may be written in a variety of 
different forms. The restriction to one-dimensional flow introduces transport 
coefficients mL and C,, which differ from the coefficients m, and Cv appearing in the 
three-dimensional equation of motion. 

7. Numerical results 
In  the preceding sections we have derived exact expressions for the transport 

coefficients mv, cv, m, and CL in terms of the parameter y defined in (5.4). In  order 
to find numerical results for y we must study the dielectric constant of a static system 
of spheres with polarizabilities given by (5.1). In  this section we evaluate y exactly 
to first order in the volume fraction. Also we propose a scheme which allows 
approximate calculation of y even at  high volume fractions. 
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First we consider the low-density value of the coefficient y.  We write 

y = 1+S, 6 = S,+O(g?). (7 .1)  

The low-density value So may be evaluated exactly from the solution of a pair 
problem. From equations (3.35), (5.15) and (5.16) of Felderhof, Ford & Cohen (1982) 
we find 

where go(R) is the low-density value of the pair correlation function, and a,,(R) and 
a,,(R) are distance-dependent amplitudes which follow from the solution of the pair 
problem. We shall consider hard-sphere statistics, so that the pair correlation 
function is given by 

(7.3) 

According to equation (3.11) of Felderhof et al. (1982) the amplitudes a,,@) and 
a,,(R) are found as solutions of the set of equations 

go(R) = 8(R - 2a). 

m 

C ME,al!, = S,,, 1 = 1,2, .. . , m = 0,1, (7.4) 
l'=l 

where 
a21+l  

a1 
ME, =-Sllt- ( - i )m (7.5) 

In  our hydrodynamic problem a, = 2, and the multipole polarizabilities a1 for 12 2 
are given by (5.1). We follow the procedure of Felderhof et al. (1982) and write So as 
the sum 

SO = SOD+S~&f, (7.6) 

where SOD is the value found in the dipole approximation, and So, represents the 
correction from the higher-order multipole moments. In  the dipole approximation 
one finds 

8a3 + Oi 
8a3 - 22 ' 

So, = $log 

The correction from higher-order multipoles is given by 

(7.7) 

with the functions b,,(R) defined by 

b,, = a,, - (ME)-'. (7.9) 

The functions may be evaluated from equations (5.9)-(5.11) of Felderhof et al. (1982). 
From those equations i t  follows that the functions a,, may be expressed in terms of 
the solutions a;, of a related problem with modified dipole polarizability a;, but with 
the same multipole polarizabilities a, for 1 2 2. Using the abbreviation M ,  = M E  we 
find 

(7.10) 

In  the present case i t  is of interest to  choose a; = -ha". Then the related dielectric 
problem concerns a system of perfectly insulating spheres, i.e. spheres with vanishing 
dielectric constant embedded in vacuum. For that system the integral (7.8), with 

a,, = a;,[ 1 + (M,  -Ma) 
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a 80, 

-0.5 -0.122 
-0.4 -0.098 
-0.3 -0.074 
-0.2 -0.049 
-0.1 -0.025 

0 0 
0.2 0.051 
0.4 0.103 
0.6 0.157 
0.8 0.212 
1 .o 0.270 

80,  

-0.095 
-0.095 
-0.095 
-0.096 
-0.096 
-0.097 
-0.098 
-0.100 
-0.103 
-0.106 
-0.110 

80 k” k, 
-0.216 0.324 3.324 
-0.193 0.289 3.289 

-0.145 0.218 3.218 
-0.121 0.182 3.182 
- 0.097 0.145 3.145 

-0.169 0.253 3.253 

-0.048 0.072 3.072 
0.002 -0.004 2.996 
0.054 -0.081 2.919 
0.106 -0.159 2.841 
0.160 -0.241 2.759 

TABLE 1.  Table of coefficients do,, do, and their sum do for various values of the mass parameter 
/3 = (mr-mp)/(m,+2m,). We also list k, =-Po and k, = 3-P0 

b,,(R) replaced by b;,(R), has already been evaluated. We denote the corresponding 
coefficient as S0mM. By comparison with (5.1) we see that this coefficient is identical 
with SOM in the limit mp/m, = co. 

In  our numerical calculations of So we consider the limit of vanishing viscosity. In  
table 1 we list the values of a,,, aOM and their sum 8, for a range of values of the 
parameter 

(7.11) 

We also list the value of the product kv = -$So which appears in the expansion of the 
virtual-mass coefficient Cv = mv/mf in powers of the volume fraction 

c v -11-38 - 2[ 2 09)+0(v2)1, (7.12) 

as follows from (6.17); We note that the case of gas bubbles may be identified with 
the limit mp = 0, i.e. P = 1. Furthermore we list the value of the product k, = 3-9, 
which appears in the expansion of the coefficient 

C ,  = ~ [ l + ( 3 - $ ? o ) g , + 0 ( ~ 2 ) ] ,  (7.13) 
as follows from (6.18). 

As shown below (6.16), van Wijngaarden’s (1976) virtual-mass coefficient should 
be identical with C ,  for mp = 0. Thus his coefficient k should equal 3 -%, where the 
superscript indicates that mp = 0. A comparison with the corresponding entry in our 
table for k, yields kt = 2.759, in good agreement with van Wijngaarden’s value 2.78. 
Apparently van Wijngaarden uses the equivalent of (7.10) in his derivation. In later 
work (Biesheuvel & van Wijngaarden 1984) the value of the coefficient was corrected 
to 3.32, which seems to correspond to  the value 3.324 for mp = 00 in our table. 

I n  order to obtain an approximate expression for the coefficient 8, applicable a t  
high density, we appeal again to  the theory of the dielectric constant. We first 
consider a system of spheres of dielectric constant e2 embedded in a medium of 
dielectric constant el. The geometrical distribution is assumed to be the same as 
before. The effective dielectric constant E* of this system is given by an expression 
similar to (5.6) : 

€*--El = PP, (7.14) 
€* + 2% 1 - f l P , [ W  + P ( P ) I ’  
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9, 0.1 0.2 0.3 0.4 0.5 

c2 0.021 0.040 0.059 0.084 0.141 
s2 0.0192 0.0276 0.0282 0.0235 0.0161 

TABLE 2. Values of the three-point parameter 5, and the Kirkwood-Yvon coefficient s2 for various 
values of the volume fraction 9, 

with reduced polarizability p given by 

(7.15) 

and with coefficients A(P)  and p(P) appropriate to this particular system. To first 
order in p the sum A(P)+p(P) is given by 

A(’)+p(l) = 9K/3/q2, (7.16) 

where K is a correlation integral involving two- and three-particle correlation 
functions (Felderhof 1982). It is related to the three-point parameter c2 introduced 
by Beran (1965) for general two-phase geometries by 

K = w -v) !L (7.17) 

The correlation integral K depends only on the geometrical distribution of spheres 
and is independent of their dielectric properties. In table 2 we list the values of c2 for 
various volume fractions, as calculated by Torquato & Lado (1986) for a system of 
identical spheres with hard-sphere statistics. According to Torquato (1985) 
substitution of the approximate value (7.16) in (7.14) provides a highly accurate 
expression for B*. 

The multipole polarizabilities (5.1) for I >  2 in the hydrodynamic system are 
identical with those of the dielectric system with e2 = 0 and el = 1, but the 
hydrodynamic system has dipole polarizability Oi = pa3, rather than a; = -ha”. This 
implies that the dipole contribution to the correlation integral K is modified. From 
the structure of the correlation integral K it follows that a reasonable approximation 
to the coefficient 13 = A +p in our hydrodynamic problem is given by 

(7.18) 

where K, is the dipole approximation to K, and &2) is the value of 6 calculated in 
dipole approximation to first order in Oi. These coefficients are given by 

K D --1 - Bs2 v? sg” = 8 2  6 / v 3 ,  (7.19) 

where s2 is given by the so-called Kirkwood-Yvon integrals for a system of 
polarizable point dipoles. The coefficient sz has been evaluated recently by computer 
simulation of a hard-sphere system a t  several volume fractions (Cichocki & Felderhof 
1989). We list a number of values in table 2. Combining (7.17)-(7.19) we find the 
approximate value for 6: 

(7.20) 
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0.1 0.2 0.3 0.4 0.5 

-0.5 
- 0.4 
-0.3 
-0.2 
-0.1 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 

-0.211 
-0.186 
-0.161 
-0.136 
-0.111 
-0.086 
-0.036 

0.014 
0.064 
0.114 
0.164 

-0.189 
-0.170 
-0.151 
-0.131 
-0.112 
-0.093 
- 0.055 
-0.016 

0.022 
0.061 
0.099 

-0.160 
-0.146 
-0.132 
-0.119 
- 0.105 
- 0.09 1 
-0.063 
-0.036 
-0.008 

0.019 
0.047 

-0.138 
-0.128 
-0.119 
-0.109 
-0.100 
-0.091 
-0.072 
-0.053 
-0.034 
-0.015 

0.003 

-0.126 
-0.120 
-0.114 
-0.108 
-0.103 
-0.097 
-0.085 
-0.073 
-0.061 
-0.050 
-0.038 

-0.141 
-0.138 
-0.135 
-0.131 
-0.122 
-0.125 
-0.118 
-0.112 
-0.106 
-0.099 
-0.093 

TABLE 3. Values of the approximate value S,,, of :he coefficient 8, as given by (7.20), for various 
values of the mass parameter /3 and the volume fraction 

In table 3 we list Sap, for five volume fractions and eleven values of &/a3 in the limit 
of vanishing viscosity for a system with hard-sphere statistics. The low-density value 
of the above expression is (Felderhof 1982) 

7 3  loi loi 
24 16 4 a3 4 a  

Sap,,, = --+-ln3+-- w -0.08568+-,. (7.21) 

We find good agreement with the values of So listed in table 1. This gives confidence 
that (7.20) also provides a good approximation to 6 = y-  1 a t  high volume fractions. 

8. Discussion 
We have shown above that the virtual mass and drag coefficient of a fluid 

suspension consisting of spherical particles immersed in a nearly inviscid fluid may 
be expressed exactly in terms of the effective dielectric constant of a related 
suspension with particular electrical properties and with the same geometrical 
distribution. We have derived average equations of motion for the fluid suspension 
by the method of ensemble averaging. In  the averaging we have assumed an isotropic 
distribution. 

The linearized equations of motion on the macroscopic scale are given by (4.14), 
(5.19), (6.1), (6.3), (6.6) and (6.8). The transport coefficients E ,  x, m, and Cv in these 
equations are local quantities. That is, they may be evaluated in terms of the local 
volume fraction and the particle distribution functions. Thus our equations may be 
extended without difficulty to  spatially non-uniform suspensions. 

The relation between the imposed force field E,(r) and the resulting velocity fields 
is highly non-local. In order to find the velocity fields one first determines the average 
field (u,(r))  from (4.14) and (5.19). Subsequently one finds the particle velocity field 
U,(r) from (5.16) and (6.1), which may be combined to give 

(8.1) 

Finally one finds the fluid velocity field V,(r )  from (6.6), which may be rewritten as 

[ - iw(m, + ma) + Ca] U, = E, + [ - io(m, + ma) + CJ (u,) .  
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The non-locality arises in the connection between (v , )  and E,. The remaining 
relations (8.1) and (8.2) are local. I n  non-uniform situations the relation between 
(u,)  and E, strongly depends on the geometry, just as in Maxwell theory. 

In formulating the above relationships we have used local transport coefficients on 
the basis of a long-wavelength approximation. As we have shown in $4, more 
generally the theory leads to  short-range transport kernels. I n  principle the 
corresponding wavevector-dependent transport coefficients may again be studied by 
use of the dielectric analogy. 

It is evident from the theory developed above that a macroscopic description of 
the two-phase system involves transport coefficients which can be evaluated only on 
the basis of a microscopic picture. We have limited ourselves to a linear theory, so 
that we describe small deviations from rest. However, once the transport coefficients 
have been found, we may use them with confidence in nonlinear equations of motion. 
In  this regard the situation is similar to the hydrodynamics of simple liquids (Hansen 
& McDonald 1986). The transport coefficients of viscosity and heat conductivity of 
a simple liquid may be evaluated on the molecular level from linear response theory. 
Subsequently these coefficients are used in the complete set of nonlinear 
hydrodynamic equations. 

Our linear response approach leads to transport coefficients mv and Cv which are 
frequency-dependent. We have treated the group q/opa2 as a small parameter and 
to be consistent we must finally expand in powers of this parameter. The first-order 
term in the expansion of the virtual mass may be regarded as a contribution to  the 
effective friction coefficient. 

Finally we emphasize that our description of hydrodynamic interactions in nearly 
inviscid fluids may also be used in the study of the dynamics of two or more particles. 
For any configuration R,, . . . , R, of N particles our formalism allows the calculation 
of a configuration-dependent mass matrix and friction matrix. One finds these 
matrices by considering the high-frequency limit in the response to oscillatory 
applied forces for the given configuration. Once the matrices have been determined 
one can construct the full nonlinear equations of motion. 

I thank Dr G. H. Jansen for his help in the numerical work and Dr G. Ooms for 
stimulating discussions. 
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